INT Workshop on "QCD Critical Point"

V. Koch, G. Roland, and M. Stephanov

July 28 - Aug. 22, 2008

http://int.phys.washington.edu/PROGRAMS/08-2b.html

Report on the First Week

Nu Xu

STAR

Program

Monday, July 28, 2008

10:30 am - Sourendu Gupta, Tata Institute

Seminar on: "New results in QCD at finite chemical potential"

Tuesday, July 29, 2008

9:30 am - Maria Paola Lombardo, INFN

Seminar on: "The QCD critical point at imaginary mu"

11:00 am - Shinji Ejiri, BNL

Seminar on: "Numerical study of the critical point in lattice QCD at high temperature and density"

Wednesday, July 30, 2008

9:30 am - Kenji Fukushima, Yukawa Institute for Theoretical Physics

Seminar on: "What can we learn from the model studies on the QCD critical point?"

11:00 am - Claudia Ratti, SUNY, Stonybrook

Seminar on: "Phases of QCD, Polyakov loop and quasiparticles"

Thursday, July 31, 2008

9:30 am - Jens Braun, TRIUMF

Seminar on: "Chiral Phase Boundary from Quark-Gluon Dynamics"

11:00 am - Bertram Klein, Technical University of Munich

Seminar on: "Scaling and finite-size scaling analysis of critical behavior in lattice QCD"

Friday, August 1, 2008

Discussions

QCD Phase Diagram

Lattice Results* Indicate:

Prediction the cross-over of T_C at zero chemical potential is most likely correct.

Most likely the region for the QCD critical point*:

T ≥ 140 MeV
$$\mu_B$$
 ≥ 200 MeV \Rightarrow

$$40 \ge \sqrt{s} \ge 5 \text{ GeV}$$

^{*} In all Lattice calculations, global termalization are assumed.

Experimental Observables:

On Lattice: a spike in susceptibility means long range correlation at the critical point.

The equilibration of the medium is assumed in all Lattice calculations.

In Experiment: measure the correlation function of baryons or protons.

$$K_B = \frac{\langle N^4 \rangle - 3\langle N^2 \rangle^2}{\langle N^2 \rangle}$$

Kurtosis analysis for protons

Partonic vs. Hadronic Phases

Summary

1) Lattice results indicating critical region:

- 2) Large fluctuation is expected in baryons
- 3) Kurtosis analysis for protons
- 4) v_2 of ϕ will help to identify partonic vs. hadronic regions.